Nonrelativistic Naturalness and the quest for Emergent Lorentz Symmetry

Kevin T. Grosvenor
Niels Bohr Institute, University of Copenhagen

Háskóli Íslands
May 22, 2018
Collaborators

Nonrelativistic Short-Distance Completions of a Naturally Light Higgs, [arXiv:1608.06937] with

Petr Hořava and Christopher J. Mogni

Berkeley Center for Theoretical Physics

Ziqi Yan

Perimeter Institute for Theoretical Physics

Laure Berthier

Niels Bohr Institute
Outline

Relativistic ϕ^4 theory + Higgs Hierarchy Problem

$z = 2 \phi^4$ theory + nonrelativistic solution to HP

Emergent Lorentz Symmetry

Recap & Outlook
Technical Naturalness and its Successes

Technical naturalness à la ’t Hooft (1979):

“at any energy scale μ, a physical parameter or set of physical parameters $\alpha_i(\mu)$ is allowed to be very small only if the replacement $\alpha_i(\mu) = 0$ would increase the symmetry of the system.”

Emergence of QED above m_e.

Hadronic resonances in GeV range.

Prediction of the charm quark mass. [Gaillard and Lee, 1974]
Technical Naturalness and its Successes

Technical naturalness à la ’t Hooft (1979):

“at any energy scale μ, a physical parameter or set of physical parameters $\alpha_i(\mu)$ is allowed to be very small only if the replacement $\alpha_i(\mu) = 0$ would increase the symmetry of the system.”

- Emergence of QED above m_e.
- Hadronic resonances in GeV range.
- Prediction of the charm quark mass. [Gaillard and Lee, 1974]
Technical Naturalness and Naturalness Puzzles

Technical naturalness à la Wilson (1971):

“A symmetry breaking term h_λ is protected if, in the renormalization group equation for h_λ, the right-hand side is proportional to h_λ or other small coupling constants even when high-order strong, electromagnetic, or weak corrections are taken into account [. . .].”
Technical naturalness à la Wilson (1971):

“A symmetry breaking term h_λ is protected if, in the renormalization group equation for h_λ, the right-hand side is proportional to h_λ or other small coupling constants even when high-order strong, electromagnetic, or weak corrections are taken into account [. . .].”

- Cosmological constant problem: $R_{\text{universe}} \gg \ell_{\text{Planck}}$.
- Eta problem: $\eta \ll 1$ or $m_{\text{inflaton}} \ll H$.
- Strange metals: $\rho \sim T$.
- Higgs hierarchy problem: $M_{\text{Higgs}} \ll M_{\text{Planck}}$.
Outline

Relativistic ϕ^4 theory + Higgs Hierarchy Problem

$z = 2 \phi^4$ theory + nonrelativistic solution to HP

Emergent Lorentz Symmetry

Recap & Outlook
Naturalness in ϕ^4 theory

Relativistic scalar in $3 + 1$ dimensions:

$$S = \frac{1}{2} \int d^4x \left(\partial_\mu \phi \partial^\mu \phi - m^2 \phi^2 - \frac{\lambda}{12} \phi^4 \right)$$

EFT below “naturalness scale” M

$$\bigcirc \quad \implies \delta m^2 \sim \lambda M^2$$

$$\lambda \sim \varepsilon \iff m^2 \sim \varepsilon M^2$$

$$(\lambda, m^2) \to 0 \implies \phi \to \phi + b \text{ symmetry}$$
The Higgs Hierarchy Problem

- $\lambda \sim 1 \Rightarrow M \sim m \sim 1$ TeV.
- Expect higher dimension ($5, 6, \ldots$) operator effects. [Giudice 1307.7879]
- A sampling of solutions:
 - SUSY (expect superpartners)
 - Conformal (expect second Higgs)
 - Extra dimensions / Braneworld (expect missing energy signals)
- Post-Naturalness Era? [Giudice 1710.07663]
Outline

Relativistic ϕ^4 theory + Higgs Hierarchy Problem

$z = 2 \phi^4$ theory + nonrelativistic solution to HP

Emergent Lorentz Symmetry

Recap & Outlook
Nonrelativistic Naturalness in $z = 2 \phi^4$ theory

UV picture: $S = \frac{1}{2} \int dt \, d^3y \left\{ \dot{\phi}^2 - \zeta^2 (\partial_i \partial_j \phi)^2 - c^2 (\partial_i \phi)^2 - m^2 \phi^2 - \frac{\lambda}{12} \phi^4 \right\}$

$z = 2$ scaling symmetry: $y \rightarrow by$ and $t \rightarrow b^2 t$

$\phi \rightarrow \phi + b_{ij} y^i y^j \implies \zeta^2 \sim 1$ and $c^2 \sim \varepsilon_1 M$

$\phi \rightarrow \phi + b \implies \lambda \sim \varepsilon_0 M^{3/2}$ and $m^2 \sim \varepsilon_0 M^2$ with $\varepsilon_0 \ll \varepsilon_1 \ll 1$
Nonrelativistic Naturalness in $z = 2 \phi^4$ theory

UV picture:

$$S = \frac{1}{2} \int dt \, d^3y \left\{ \dot{\phi}^2 - \zeta^2 (\partial_i \partial_j \phi)^2 - c^2 (\partial_i \phi)^2 - m^2 \phi^2 - \frac{\lambda}{12} \phi^4 \right\}$$

$z = 2$ scaling symmetry: $y \to by$ and $t \to b^2 t$

$\phi \to \phi + b_{ij} y^i y^j \implies \zeta^2 \sim 1$ and $c^2 \sim \epsilon_1 M$

$\phi \to \phi + b \implies \lambda \sim \epsilon_0 M^{3/2}$ and $m^2 \sim \epsilon_0 M^2$ with $\epsilon_0 \ll \epsilon_1 \ll 1$

IR picture:

$$S = \frac{1}{2} \int d^4x \left\{ (\nabla \mu \Phi)^2 - m^2 \Phi^2 - \frac{\lambda_h}{12} \Phi^4 - \tilde{\zeta}^2 (\nabla_i^2 \Phi)^2 \right\}$$

$x^0 = t$, $x^i = \frac{y^i}{c}$, $\Phi = c^{3/2} \phi$, $\lambda_h = \frac{\lambda}{c^3}$, $\tilde{\zeta}^2 = \frac{\zeta^2}{c^4}$ and $\nabla \mu = \frac{\partial}{\partial x^\mu}$

Good: $\lambda_h = \frac{\lambda}{c^3} \sim \frac{\epsilon_0 M^{3/2}}{\epsilon_1^{3/2} M^{3/2}} = \frac{\epsilon_0}{\epsilon_1^{3/2}} \sim 1$

Bad: $\tilde{\zeta}^2 = \frac{\zeta^2}{c^4} \sim 1$
Nonrelativistic Naturalness in $z = 2 \phi^4$ theory

UV picture: \[S = \frac{1}{2} \int dt \, d^3y \left\{ \dot{\phi}^2 - \zeta^2 (\partial_i \partial_j \phi)^2 - c^2 (\partial_i \phi)^2 - m^2 \phi^2 - \frac{\lambda}{12} \phi^4 \right\} \]

$z = 2$ scaling symmetry: $y \to by$ and $t \to b^2 t$

$\phi \to \phi + b_{ij} y^i y^j \implies \zeta^2 \sim 1$ and $c^2 \sim \epsilon_1 M$

$\phi \to \phi + b \implies \lambda \sim \epsilon_0 M^{3/2}$ and $m^2 \sim \epsilon_0 M^2$ with $\epsilon_0 \ll \epsilon_1 \ll 1$

IR picture: \[S = \frac{1}{2} \int d^4x \left\{ (\nabla_\mu \Phi)^2 - m^2 \Phi^2 - \frac{\lambda h}{12} \Phi^4 - \tilde{\zeta}^2 (\nabla_i^2 \Phi)^2 \right\} \]

$x^0 = t, \ x^i = \frac{y^i}{c}, \ \Phi = c^{3/2} \phi, \ \lambda_h = \frac{\lambda}{c^3}, \ \tilde{\zeta}^2 = \frac{\zeta^2}{c^4}$ and $\nabla_\mu = \frac{\partial}{\partial x^\mu}$

Good: $\lambda_h = \frac{\lambda}{c^3} \sim \frac{\epsilon_0 M^{3/2}}{\epsilon_1^{3/2} M^{3/2}} = \frac{\epsilon_0}{\epsilon_1^{3/2}} \sim 1$

Bad: $\tilde{\zeta}^2 = \frac{\zeta^2}{c^4} \sim \frac{1}{\epsilon_1^2 M^2} = \frac{\epsilon_0}{\epsilon_1^2 m^2} \sim \frac{1}{\epsilon_1^{1/2} m^2}$
Nonrelativistic Solution to HP

\[S = \frac{1}{2} \int dt \, d^3 y \left\{ \dot{\phi}^2 - \zeta_3^2 (\partial^3 \phi)^2 - \zeta_2^2 (\partial^2 \phi)^2 - c^2 (\partial \phi)^2 - m^2 \phi^2 - \frac{\lambda}{12} \phi^4 \right\} \]

\[\zeta_3^2 \sim 1, \quad \zeta_2^2 \sim \varepsilon_2 M^{2/3}, \quad c^2 \sim \varepsilon_1 M^{4/3} \]

\[\lambda \sim \varepsilon_0 M^2, \quad m^2 \sim \varepsilon_0 M^2, \quad \varepsilon_0 \ll \varepsilon_1 \ll \varepsilon_2 \ll 1. \]
Nonrelativistic Solution to HP

\[S = \frac{1}{2} \int dt \, d^3y \left\{ \dot{\phi}^2 - \zeta_3^2 (\partial^3 \phi)^2 - \zeta_2^2 (\partial^2 \phi)^2 - c^2 (\partial \phi)^2 - m^2 \phi^2 - \frac{\lambda}{12} \phi^4 \right\} \]

\[\zeta_3^2 \sim 1, \quad \zeta_2^2 \sim \varepsilon_2 M^{2/3}, \quad c^2 \sim \varepsilon_1 M^{4/3} \]
\[\lambda \sim \varepsilon_0 M^2, \quad m^2 \sim \varepsilon_0 M^2, \quad \varepsilon_0 \ll \varepsilon_1 \ll \varepsilon_2 \ll 1. \]

\[S = \frac{1}{2} \int d^4x \left\{ (\nabla_\mu \Phi)^2 - m^2 \Phi^2 - \frac{\lambda_h}{12} \Phi^4 - \zeta_3^2 (\nabla_i^3 \Phi)^2 - \tilde{\zeta}_2^2 (\nabla_i^2 \Phi)^2 \right\} \]

\[\lambda_h \sim \frac{\varepsilon_0}{\varepsilon_1^{3/2}} \sim 1, \quad \tilde{\zeta}_3^2 \sim \frac{1}{m^4}, \quad \tilde{\zeta}_2^2 \sim \frac{\varepsilon_2}{\varepsilon_1^{1/2}} \frac{1}{m^2} \implies \frac{\varepsilon_2}{\varepsilon_1^{1/2}} \leq 1 \]
Yukawa Interactions

Assume relativistic fermions

UV: $Y_f \phi \bar{\psi} \psi \rightarrow$ IR: $y_f \Phi \bar{\psi} \psi$

\[
\delta m^2 \sim Y_f^2 \Rightarrow Y_f \sim \varepsilon_0^{1/2} M
\]

\[
y_f = \frac{Y_f}{c^{3/2}} \sim \frac{\varepsilon_0^{1/2}}{\varepsilon_1^{3/4}} \sim 1 \Rightarrow \text{accommodates fermion masses}
\]

e.g., vacuum Čerenkov radiation of fermion if \(\frac{d\omega}{dk} \leq c \)

Conservative lower bound for Čerenkov onset in our model \(\sim 100 \) TeV

Cosmic ray electrons at \(\sim 5 \) TeV directly observed (VERITAS)

Indirectly at \(\lesssim 100 \) TeV from supernovae x-ray synch rad (ASCA)
Outline

Relativistic ϕ^4 theory + Higgs Hierarchy Problem

$z = 2 \phi^4$ theory + nonrelativistic solution to HP

Emergent Lorentz Symmetry

Recap & Outlook
Lorentz Invariance in the IR

Need same c for ALL species in the IR!

Force c for all species to be c_0 in UV.

$$\beta_i = \left(-\frac{4}{3} + \# \frac{e^4}{c_0^2} \right) \rho_i$$

where $c_i^2 = \rho_i M^{4/3}$

$$\sim \varepsilon_1 \ll 1$$

Matching of c's is preserved in the IR up to $\varepsilon_1 \log(M/m) \ll 1$

EFT cannot explain the “initial” condition of c_0
Emergent Lorentz Symmetry

Scalar and spinor (speeds c_b and c_f) + Yukawa g. [Anber and Donoghue 1102.0789]

β_{c_b} or $c_f \propto (c_b - c_f) g^2$ and $\beta_g \sim g^3$.

Generic g: Lorentz symmetry emerges (slowly) at low energies.

Strongly coupled fixed point g_*: $c_b - c_f \to 0$ as a power law!

Favorable evidence in holography. [Bednik, Pujolàs and Sibiryakov 1305.0011]

Does such a strongly coupled fixed point exist in our theory?
Outline

Relativistic ϕ^4 theory + Higgs Hierarchy Problem

$z = 2 \phi^4$ theory + nonrelativistic solution to HP

Emergent Lorentz Symmetry

Recap & Outlook
Recap and Outlook

Nonrelativistic UV \rightarrow relativistic IR.

Shift symmetries produce natural hierarchies among couplings.

Mass hierarchy even with $O(1)$ IR couplings.

Accommodate SM Yukawas and Yang-Mills couplings naturally.

More experimental bounds.

Explore decay of LIV after strong coupling.

Apply to other problems (e.g., strange metals).
Recap and Outlook

Nonrelativistic UV \rightarrow relativistic IR.
Shift symmetries produce natural hierarchies among couplings.
Mass hierarchy even with $O(1)$ IR couplings.
Accommodate SM Yukawas and Yang-Mills couplings naturally.

More experimental bounds.
Explore decay of LIV after strong coupling.
Apply to other problems (e.g., strange metals).

Thank you!